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We consider a nonlinear oscillator driven by random, Gaussian "noise." The oscillator, 
which is damped and has linear and cubic terms in the restoring force, is often called 
the "Duffmg Equation." The Fourier transform of the response is expanded in a series 
in the coefficient of the nonlinear term. This series is then squared and averaged, 
and each term in the resulting response spectrum series is expressed in terms of the 
response spectrum of the linearized harmonic oscillator (i.e., without the cubic term). 
Since the forcing function is Gaussian, the linear solution is Gaussian. The terms in 
the series for the response spectrum are then regrouped so that common quantities 
can be factored out. This process leads to "consolidated equations" for the response 
spectrum and the "common factors." These consolidated equations are truncated in 
various ways, and the corresponding solutions are compared with an analog computer 
experiment. This technique was proposed for turbulent flow by Kraichnan and followed 
up by Wyld, and has yielded some good results. The numerical results indicate that 
the truncated consolidated equations can provide a substantial improvement over 
some other methods used to solve this type of problem. The methods compared with 
it are (1) the traditional truncated parametric expansion, (2) statistical linearization, 
and (3) use of the joint-normal hypothesis to express the fourth and sixth moments in 
terms of the second. 
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1. I N T R O D U C T I O N  

1.1. Mot ivat ion 

The usual restrictions used in the theoretical study of turbulence are to an incom- 
pressible, Newtonian fluid whose instantaneous-velocity field satisfies the Navier- 
Stokes and continuity equations. It is supposed that the statistical properties are 
determined by controllable boundary and/or initial conditions and by the intrinsic 
properties of the fluid. Only the statistical properties of the velocity field are subjected 
to prediction and theoretical study. Initial conditions are given statistically. 

The principal quantity of interest is the joint probability density functions for 
the velocity field at many points and many times. We usually focus our attention 
on the lowest few moments of the two-point, two-time probability density function. 

It is well known that if one tries to write down equations for these moments 
there is always at least one more unknown than equation (e.g., the equation for the 
second moment contains the third moment, etc.). Any finite collection of these 
moment equations is therefore indeterminate. 

A "theory" for the statistical behavior of such a nonlinear system consists then 
of a proposal for "closing" the set of moment equations, presumably at finite order. 
Often this "closure" is effected by a physically motivated hypothesis for expressing the 
moments of some order in terms of lower moments. In turbulence theory this approach 
is typified by the spectral transfer (third moment)hypotheses of Kolmogorov and 
Obukhov, Onsager, Heisenberg, Kovasznay, etc., (z,2~ in terms of the spectrum function 
(second moment). A different approach has been taken by Millionshtchikov, (3~ 
Tatsumi, I4) Proudman and Reid,(5) Deissler,(6) Kraichnan,(V) and others: the use of more 
or less formal expansion procedures, with truncation to effect closure. Another 
approach, pursued by Meecham and Siegel (8) and others (9.1~ expands the random- 
velocity field in terms of "random Hermite polynomials" and achieves closure by 
truncation. 

Up to now the most successful of these, measuring success by agreement with 
experiment in the absence of empirical constants, has been Kraichnan's "direct 
interaction approximation. ''(v) Although it misses slightly one of the most certain 
properties of large-Reynolds-number turbulence, the Kolmogorov " - - ~  law" for 
the spectrum in the isotropic inertial subrange, it yields good approximations to 
the spectrum at intermediate Reynolds numbers, m) 

In recent years Kraichnan (z2) has concluded that this success of the direct 
interaction approximation may be fortuitous. Nevertheless it seemed to us worthwhile 
to test methods of this type on a nonlinear stochastic problem whose results can 
be got reliably by established methods for comparison. The "oscillator" with 
linear-plus-cubic "spring" was picked. 

It has become clear that Kraichnan's direct-interaction approximation is a 
special truncation of an expansio n of the turbulent-velocity field in powers of the 
Reynolds number. Since turbulence occurs only for Reynolds numbers larger (usually 
much larger) than unity, Kraichnan (v) pointed out that this expansion probably 
diverges everywhere. His first truncation retains terms of all powers in the expansion, 
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though an ever decreasing fraction of those of increasingly high order. The nature 
of this class of truncations is perhaps best displayed by the use of diagrams to 
represent the physical quantities and operations? 

These diagrams, introduced to turbulence theory by Kraichnan, t13) are convenient 
for the identification of groups of factors with common properties among classes 
of  terms in the expansions. This suggests the regrouping of  the terms into (infinite) 
subsets such that these groups of factors can be "isolated." Each group can then 
be represented by a single symbol, giving the expansion expressed as a sequence of  
"consolidated diagrams." It is these infinite consolidated sequences which are then 
truncated. 

Kraichnan tT~ was also the first to propose and identify explicitly equations 
which were a formal summation, in the sense of  the paragraph above, of an infinite 
group of terms from the Reynolds-number expansion. By restricting his attention 
to a particular class of  initial conditions, he developed two simultaneous equations 
for the energy spectrum and the "infinitesimal-impulse response function," a kind 
of generalized Green's function. One truncation of these equations is his "direct 
interaction approximation," a pair of  integral equations when written in traditional 
symbols. 

He has shown that his direct interaction approximation equations are exact 
for a "model" system, a~ This assures that realizability conditions, e.g., nonnegative 
definite energy spectrum, are satisfied. Numerical results turn out remarkably well 
for the case of isotropic turbulence, m~ 

In a more recent paper, Kraichnan ~12~ stated that his second-order approximation 4 
is not as good as his first (direct interaction) approximation. Later he introduced 
a somewhat different method of consolidation by adding the generalized "vertex 
operator" concept. ~4) This results in three simultaneous equations for three unknowns, 
and permits different truncations. We have not encountered any turbulence computa- 
tions using the generalized vertex operator. (15~ 

Shortly thereafter H. W. Wyld a6~ put forth a more systematic exposition of 
the diagrammatic approach. We have employed the Wyld procedures more or less 
closely in testing the method on the During equation. Truncations involving all three 
generalized equations are designated here as "Kraichnan-Wyld approximations." 

1.2. T h e  Duff ing Equat ion 

Because of the complexity of the Navier-Stokes equations, and because of the 
ad hoc character of the truncation of the consolidated expansions, it is very difficult 
to evaluate a priori the "approximations" mentioned above. Their consequences 
can, however, be compared with experiment. In this paper we consider a much 

The alphabetical symbols representing physical quantities, and the plus, minus and summation 
signs representing operations, are also diagrams. 

4 The direct-interaction approximation involves expanding the third moment which appears in the 
equation for the second moment, in a Reynolds-number series, and consolidating in a particular 
way. Higher approximations involve expanding higher moments in Reynolds-number series and 
consolidating. 
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simpler nonlinear random system, a damped oscillator with a cubic term in the 
restoring force, driven by a random forcing function: 

d2x a dx 
dt - - 2  + dt + x + / 3 x  3 = f ( t )  (1) 

With f = 0 this is often called the During equation. ~17~ The study will be confined 
to cases in which f ( t )  is a Gaussian random process. 

Simplicities of this equation relative to the Navier-Stokes equation for testing 
truncations include: (a) that it has fewer variables, (b) that its statistical response 
can be studied via a Fokker-Planck equation, ~ls~ and (c) that the coefficient/3 of 
the nonlinear term can be meaningfully set at a continuous range of values beginning 
at zero; i.e., there exists a range of "small nonlinearity." It is significant to note, 
however, that a /3-expansion around /3 = 0 does not converge. This is important 
in light of the fact that Kraichnan has speculated that the Reynolds number expansion 
of the solution of the Navier-Stokes equation does not converge for Reynolds 
numbers where turbulence can be supported. Since (1) is clearly well-behaved for 
/3 > 0, it may be true that a/3-series would converge in some region if the expansion 
were around any positive /~, say/3 o (certainly having a radius of convergence less 
than/30). A/3-expansion around ]~ --- 0 would have to converge for fi < 0 as well 
as [3 > 0. For/~ < 0, a large enough "kick" from the forcing function could put 
the response into a region where the "effective spring constant" is negative (i.e., 
I/3 [ I x ~ I > [ x t). The response would then continue to grow. For a Gaussian forcing 
function, the probability of a large enough kick is finite so the average properties 
of the response are not defined in the limit of large time. 

In Section 3 we develop a set of consolidated equations for the During equation 
along the lines of Wyld's work. These are then truncated in several different ways 
and solved numerically. We try to interpret these truncations in terms of the approxi- 
mations mentioned in Section 1.1. 

We can test the results in two ways. First, the Fokker-Planck equation for the 
steady-state, one-time, velocity-displacement, joint probability density function can 
be solved] ag~ and hence we can get good approximations to mean-square displacement 
(second moment), third moment, fourth moment, etc. 5 Second, an analog-computer 
experiment gives the form of the power spectrum for a range of governing parameters. 
We have found no published data on measurements of statistical quantities for the 
During equation/2~ 

2. USEFUL A U X I L I A R Y  RESULTS 

2.1. The Steady State One-Point Probability Density Function 
for the Duffing Equation 

If  we postulate a delta-correlated Gaussian forcing function, the Fokker-Planck 
equation for the response probability density function is exact. It therefore provides 

For an idealized system we can postulate a Dirac-correlated forcing function ("white noise"), 
in which case the Fokker-Planck result is exact. 
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a good standard against which to test the various approximate truncation methods. 
The Fokker-Planck treatment is discussed in References 18 and 19. The resulting 
steady state, onepoint joint probability density for the response x and its time 
derivative y =-- dx/dt is 

I -%]I P=u(u,v) = Cexp  --  t D §  + (2) 

where C is chosen to normalize 6 P~y(u, v). Because P~y is not integrable in closed 
form, we cannot write down an analytic expression for C. D is a statistical property 
of the forcing function, essentially its "diffusivity. ''as) 

We see from Eq. (2) that the time derivative of the response is Gaussian. The 
probability density function of x alone follows by integration over v from --  oo to co: 

= § 4) t  (3) 

N o t e  that  for  # < 0, P ~  is n o t  integrable .  
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We find functions 7 

and 

These two functions are plotted in Figs. 1 and 2. 

2.2. The Analog Computer Simulation 

The Fokker-Planck analysis mentioned above was confined to single-time 
probabilities, but we are very much interested in how well the truncated expansions 
approximate the power spectrum, a two-time function because it is the Fourier 
transform of the autocovariance. Therefore experiments were done on an electronic 
system which behaved essentially like Eq. (1). I1s,23> 

The measured output second and fourth moments are included in Figs. 1 and 2 
respectively, and the measured output power spectra are included in Figs. 10-12. 
Spectrum measurements were made by feeding the analog computer output through 
an adjustable bandpass filter (Dytronic, Model 720, medium bandwidth), squaring 
and averaging. 

7 < > - - i n d i c a t e  ensemble average. 
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The nonzero bandwidth of any real filter causes a systematic "error"  which 
can in principle be "corrected" by solving an integral equation. This is rather complex, 
so we followed instead the inverse procedure of subjecting all theoretical spectra 
to a numerical "filtering" process with the same bandpass function as was imposed 
by the spectral analyzer in the experiment. Both filtered and unfiltered theoretical 
spectra are included in each comparison. 

3. T H E  C O N S O L I D A T E D  E Q U A T I O N S  

3.t.  Introduction 

In this section we develop two kinds of  consolidated equations for the power 
spectrum of the solution of Eq. (1). 

We first develop a pair of equations for the power spectrum and a "generalized 
(modified) Green's function, ''s These correspond to Kraichnan's earlier work. 
Although none of the truncations tried here corresponds precisely to his "direct 
interaction approximation," one of them is roughly the same order--as will be 
discussed. 

We then develop a slightly different form of consolidation, involving the use 
of  a "generalized (modified) vertex operator" like that suggested for turbulence by 
Kraichnan (~1) some time after his earliest papers. This approach involves a total of 
three consolidated equations of infinite order in the three unknown functions. We 
use a formalism like that of Wyld. 

In order to develop these consolidated expansions, we first consider a (traditional) 
]~-expansion of the Fourier transform of Eq. (1). We then devise a set of diagrams 
which can be put into one-to-one correspondence with the terms in this expansion. 
A correspondence between the process of averaging terms in the traditional parametric 
expansion and a process of combining diagrams will be established. It can then be 
shown that the further combining ("consolidation") of structurally related groups 
of  diagrams is equivalent to summing over infinite subsets of terms in the parametric 
expansion. Each group of  structurally analogous terms is then represented as a 
consolidated diagram in the manner of  Kraichnan (21) and Wyld, an) giving the 
consolidated equations. 

3.2. Parametr ic  Expansion of the Fourier Transform of the Response 
of the Duffing Oscil lator Equation 

We start with the Duffing oscillator, Eq. (1) wi thf ( t )  restricted to be a Gaussian 
random function. 9 For further simplicity, we consider only the statistically stationary 
state. We could let 

c o  

u(~o) = ~ J ~_~ e-i~x(t) dt 

8 There is no standard terminology for these functions. We use that of Lee. (zs) 
9 Cf. Section 3.4. 
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Since x(t)  is not  square-integrable, this integral doesn ' t  exist. We could, however,  
use it in the sense of  a generalized function. (~9,2z) 

Ins tead we will assume x(t)  is periodic with per iod 2 T  and let T--~  oo in the 
final equations. This formula t ion  has been used by Heisenberg, Kraichnan,  Wyld,  
and others in the turbulence problem. 

Let  

x(t)  = Z u(o)) e i~ 
co 

f ( t )  = Z g(o)) e''~' (6) 
co 

where 

and 

"(o)) ~ 2@ f]T x( t )e"~dt  

f ( t )  e - i~  dt 
g(o)) = -T 

Since x is real, u(o)) = u*(--o)). 1~ 
In  the limit T - +  0% ~ --+ 1/2rr J'_~ do). 
The Fourier  t ransform of  Eq. (1.2.1) is 

u(o)){1 - -  o)2 + ic~o)} + / 3  ~ ~ u(o) - -  co') u(o)' - -  co") u ( J )  = g(o)) (7) 
co r co  ~ 

The sum in Eq. (7) is equivalent to 

Z Z Z u(o)O u(o)~) u(~.) 
u J  1 ~o 2 o~ 3 

with the triple sum restricted to frequencies such that  o)1 + o)2 + o)a = co. I t  is 
effectively a double sum, now written for  brevity as 

Y u(o)0 u(o)~) u(o)3); o)1 + o)~ + o). = o) 

We shorten the nota t ion  a little further  by writing the subcondit ion 

o)1 + o)2 + c~ = o)4 ~-+ (1, 2, 3 t 4) 

where co ~ COo for  the writing of  this condition. Condit ions such as o)1 + o)~ = 
0) 8 + o)~ will be written as (1, 2 I 3, 4), etc. In our shortened notat ion Eq. (7) is 

u(o)){1 - -  o)z + i~o)} + fi ~ u(o)l) u(o)~) u(o~3) = g(o)). (7') 
( 1 , 3 , 3 1 0 )  

lo (.) indicates complex conjugate. 
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If/3 = 0, Eq. (1) is just the linear, damped harmonic oscillator. Let u9(s be 
the Fourier transform of the response of this linear system: 

/1o(s = S(s g(s (8) 

where 

S-1(s  = 1 - -  s + ias (9) 

We now write u in Eq. (7) as a series in powers of/3: 

/1(s = /10(s -~- /11(s -}- /12(s -~- "'" (10)  

The subscript indicates the order of/3 involved. We do not follow the usual 
convention of writing the expansion as an explicit power series in/3, e.g., 

u = u0 + ~,~/3 + ~/3~ + "'" 
because the forms of the terms uj(s are conveniently checked with/3's dispersed 
as internal factors, as will be seen in Section 3.3. We substitute Eq. (10) into Eq. (7) 
and equate separately to zero terms of the same order in/3.11 

u~(s = --S(s 13 Z Uo(%) Uo(s u9(w3) (11) 

etc. 

(1,2,310) 

u~(s = -3s(s Z 
(1,2,310) 

/1z(s = --3S(s Z 
(1,3,31o) 

/1o(s163 u~(s (12) 

{Uo(s Uo(s u2(s -1- Uo(s Ux(s Uz(s (13) 

By replacing each uk on the right sides in terms of lower order terms, we can 
express each term in the series for u, in terms of Uo only: 

/11 = --S((.o)/3 Z "0(031) U0(602) UO(O)3) (14) 
(1,2,310) 

u2 = 3S(s [3 ~ [Uo(s u9(s S(s ~ [Uo(s u0(s Uo(s (15) 
11,2,310) (4,5,6}3) 

u 3 = --3S(s Z lUo(s Uo(s 3S(s 
(1,2,310) 

x Z [Uo(s Uo(s163 Z Uo(s Uo(s163 
(4,5,613) (7,8,916 ) 

- 3/3s(s y~ t/1o(s s(s s(s 
(1,2,3!0) 

x Y~ [u0(s u9(s u9(s ~ u0(s u0(s u0(s I 
(4,5,6[2) (7,8,913) 

etc. Here the orders in/3 are clear:/1j --~/3J. 

n It should be noted that there is no relation between the subscripts of u~ and co o . 

(16) 
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3.3. Diagrammatic Representation of the Terms in the Parametric Expansion 
for u(~) 

I t  is useful to introduce a d iagrammat ic  representat ion for  the terms in the 
series for  u for  three reasons. First, it is much  easier to write down the diagrams 
for  the higher order  terms than to write out  the terms themselves. Second, these 
d iagrams prove  to be a viable language for  expressing equations for  the statistical 
propert ies  of  u. Third,  they are heuristically valuable for  combining terms according 
to  their structural  properties,  to fo rm consolidated series. 

The d iagrammat ic  symbols will be 

straight line ( ) +-~ S(co) 

dot  "ver tex"  (.) ~ --f l  

dashed line ( -  - - )  <---r Uo(CO). 

The  straight line is the Green 's  function for  the linearized (/3 = 0) case. 
The diagrams for  the first six terms in the series for  u are shown in Fig. 3. 

Uo= --- u,: - - ' @  

Uz = 3 ,/" ,'{-- 

"" -4.:,: U 3 = 9 ~ " " -  +5 

-4-" q- 
+ +m :x,(_.~- 

 !ii< +5 + 5 4  

+54 -- " 

Fig. 3. Diagrams for the terms in the expansion for corresponding to Eqs. (14), (15), and (16) and 
similar equations for higher-order terms. 
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In order to establish a one-to-one correspondence, we set down rules for forming 
these diagrams. 

Rule 1. Four elements are joined at each vertex, at least one of which is a 
straight line. 

Rule 2. Frequency is conserved at each vertex: the sum of the frequencies of 
the elements to the right of a vertex equals that of the elements to the left. Summation 
is implied over all frequencies, consistent with the above conservation. 

Rule 3. There is a factor of 3 associated with every vertex which has only 
1 or 2 dashed lines entering it. 

Rule 4. When the total number of solid lines to the right of  a trifurcation 
with two solid lines is not the same along the two paths following these solid lines, 
multiply the diagram by a factor of  2. Start with the trifurcation furthest to the 
right and apply this test, then work to the left along all possible paths. For trifurcations 
yielding three solid lines we must consider three possible cases. I f  the three branches 
have the same number of solid lines, there is no coefficient. If  two branches have 
the same number of solid lines, multiply the diagram by a factor of 3, otherwise, 
multiply by 6. 

Rule 5. There are no closed polygons. 

Rule 6. The complex conjugate of a diagram is its mirror image in a vertical 
plane. 

Rules 1-5 follow directly from examination of  the form of the terms in (10). 
Rule 1 comes from the cubic form of  the nonlinear term. Rule 2 comes from the 
summations. Rules 3 and 4 come from the symmetry of the terms in the sum. Rule 5 
follows from the fact that there are no sums of wavenumbers adding to zero. 

Consider now H I = --S(co)~ '~(1.2,310) U0(col) H0(co2) U0(co3)" In terms of  diagrams 
this is 

_,~ ,,, 

s (~) .1t uo (~ 1) 
I _ .  

" - - - - u o  (~2) 
f""i" uo(co3) 

The corresponding analytical expression is the product of the elements in the 
diagram. A summation over all col, ~ and co~ such that col -1- w~ § co3 = co is 
implied by rule 2. 

Next consider 

u2 = --3S(co) fi ~ //0(0)1) /'/0(('02) ~/1(CO3) 
(1,2,310) 

= 3S(~)/~ Z [Uo(~O ~o(~) S(~.)/3 E 
(1,2,310) (4,5,613) 

Uo(co~) ~o(co~) Uo(~'6)] 
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In  terms o f  d iagrams  ~ this becomes 

s (~) 

s(~3) 

o (~o4) 
/ /  

| -" ~ ' - J  u0(~os) 

\ \ 

o c t 0  (~o 2 ) t u0 (o~6) 

The p roduc t  o f  these elements is S(o~)/3u0(~ol) Uo(~O2) S(m3)/3u0(~o4) u0(~os) u0(co6). 
A summat ion  over  co~, ~o~, co3, oJ4, ~o5, co 6 such tha t  co 1 + co 2 § co 3 = co and 
oJ4 § co 5 § co 6 = co a is required by  Rule  2. By wri t ing down a few terms in the 
series and  their  cor responding  diagrams,  it  can be seen tha t  there is a one- to-one 
correspondence.  

To draw u~,  take  n Green ' s  funct ions (s traight  lines) and  n vertices; combine  
them in all possible  ways consis tent  with the above rules and  add  the necessary 
(2n + 1) u0's (dashed lines). 

3.4. Construction of Diagrams for the Terms in the Equation 
for the Response Spectrum 

The series (10) involves r a n d o m  quantit ies,  bu t  we are interested in the averaged 
proper t ies  of  response or  o f  its Four i e r  ampl i tude  u(oJ). 

To get a " s imple"  equat ion  for  the spect rum (u(o~)u( - -w)) ,  iS we restrict  the 
forcing funct ion f ( t )  to be a Gauss ian  r a n d o m  process with zero mean.  Then all 
o f  its statist ical  proper t ies  can be given in terms o f  its second moment .  I f f  were a 
general  r a n d o m  function,  all o f  the moments  o f f  would  have to be given. 14 

W e  shall also l imit  our  s tudy to the s ta t ionary  response o f  Eq. (1). I f  x(t) is a 
s ta t ionary  r a n d o m  function,  its covar iance 

(X(tl) x(te)) = R(t  2 - -  tl) (17) 

is a funct ion o f  (t2 - -  tl) only. F r o m  Eq. (6) 

(x(tl) x(t~)) = ~ ~ (u(co') u(co")) exp[i(co't 1 + ~o"t2) ] 
o a  t c o  ~ 

~2 We adopt the arbitrary convention of drawing all diagrams as symmetrically as possible. In 
particular, each trifurcation is made symmetric. In order to conform with Rule 2, care must be 
taken to keep elements on the proper (right-left) side of the vertex. 

z3 < >__indicate ensemble average. 
z4 A case of intermediate complexity is that with f derived from a Gaussian process by a zero-memory 

nonlinear transformation. In that case the higher moments can still be expressed in terms of the 
second moment. 
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If  Eq. (17) is to hold, co' = --co" so 

(u(co') u(co")) = U(w') 8~,,_o~- (18) 

where U is the spectrum function and 

tlo if m x = m z  
3~1'~ ~ if % @ c o  2 

Since a linear transformation of a Gaussian random process yields a Gaussian 
random process, g(w) is Gaussian (the Fourier transform being linear). Thus uo(o~), 
a linear function of g(~o), is also Gaussian. 

By stationarity 

(~/0((-O1) U0(OJ2) ) = UO((D1) ~ml,--o) 2 

and, because of the Gaussian behavior, 

(.o(O~0 Uo(~) Uo(~O3) Uo(O~4)) = ~ ~ Uo(~Ox) Uo(~) ~91~--tO Z ~03~--C04 

+ ~Ojl,_a)a(~to~,_oiU0(r176 U0(o)2) 

§ 8 1,_.fi~,_~ U6(%) U0(o~2) (19) 

We get similar results for all higher even moments; all odd moments of Uo are zero. 
To get an equation for the spectrum of the response, we multiply the series (10) 

for u(oJ) by the series for u(--co) = u*(o~). 
Write (u(co) u(--w)) --~ U(co); then 

u(~o) = (Uo(~O) Uo*(~o)) + (u0(~o) .F(o~)) + (u~(~o) Uo*(~)) + <Uo(~O) u~*(~)) 

+ (ul(~) ul*(~)) + <u~(o~) Uo*(O~)> + ... (20) 

We recall, by rule 6, that the complex conjugate of a diagram is its mirror image 
in a vertical plane, e.g., 

\ 
~-.%. 

HI >~ = ____~ ~ ,  

f 
/ 

From the diagrams in the series for u, we now synthesize a set of diagrams 
that are in one-to-one correspondence with the terms in the series for U(w). 

To do this we must introduce a new symbol. Let 

Uo=(UoUo*)=-- (.  ) = r  

To show how diagrams for U(co) are formed, first consider the term 
(ul(oJ) ua(--o))) in Eq. (20). Analytically this corresponds to 

(1,2,3 lO) (4,5,616 ) 



166 J, B. Mor ton  and S. Corrs in  

Using the sixth-order Gaussian condition analogous to (19), 

(uz(~o) ua(--co)) = 6S(~o)fi ~ {U0((.Ol) [70(0/2) U0((tl3)}/~S(--(.o ) 
11,2,310) 

( a )  

(b) 

We see that the process is to take all the u0, combining them in pairs in all 
possible combinations and keeping track of the summations involved. 

In terms of  diagrams, term (a) above is 

and (b) above is 

9 ~ 

To form these diagrams, we place the two "tree-like" diagrams corresponding 
to the two u,~'s in positions such that the dotted lines face each other, then we combine 
dotted lines in all possible pairs, using the relation 

_ . . . .  - )  : 

Note that <---> = 0. 
In terms of diagrams, 

( U l ( ( O )  b / l ( - - O ) ) )  = 

/ \ 

. . . .  
f 

\ / 
\ / 

Combining u0's as we did in the analytic form is equivalent to combining pairs of 
dotted lines to give wavy lines. Thus 

--._5 < - - < .  =~ 
+ 9  

(22) 

Identical a5 diagrams result from permutations of dummy variables in the summa- 
tion. These are mathematically identical. 

1~ There is no unique way to draw these diagrams. Thus, two diagrams which c a n  be drawn to look 
identical must be considered identical. 
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A more complicated example is one of the third-order terms: 

f 
/ 

(u~(o~) m*(09)) = < -~ 
\ 

< ), 
\ / 

= - 1 8  ~ (i) 

+ 27 - ~  ~ (ii) 

+ 54 ~ (iii) 

+ I08 ~ (iv) 

+ 54 @ (v) 

+ 54 ,~.,x,,-~"~ (vi)  

(23) 
Each of these diagrams represents a product of the factors involved (e.g., S, U0, 

or fi). Since these diagrams are terms in the series representation of (u(09) u(--~o)), 
it follows that the first and last elements are evaluated at frequencies co and --co 
respectively. Consider for example 

s(~) I" ~s(-~) 
The rest of the elements are given "dummy" frequencies. In the above example, 

the three U0 factors are given "dummy" frequencies, say 091,092, ~ Then the 
product of factors in the above diagram becomes: 

S(09) #U0(09J U0(09~) U0(09~) #S(--09). 

Rule 2 states that we must sum over all dummy indices with the condition 
that frequency is conserved at each vertex. The summations are not associated with 
the vertices--they are associated with the dummy frequencies. Only the conditions 
on the summations are associated with the vertices. 16 

16 Every diagram in the series for U(o0, Fig. 4, can be cut in two by passing a vertical line through 
it that intersects only U0's. All S to the right of this line are complex conjugates of those to the 
left of the line. Note that  S*(oJ) = S(--o~). In order to apply rule 2 consistently, we must recall 
that  U0(~o) = (u0(oJ)uo(--a0) and, hence, U0 is a function of both co and -~o. The oa argument is 
then associated with the vertex that U0 enters from the left and the (--~o) argument is associated 
with the vertex (which may be the same vertex) that it enters from the right. 
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Fig. 4. 

0 ~h Order ~0~ pl Order + 5 ~ . ~  
,2n~Order+9 0 0~1 + 1 8 ~ ' ~ ~ )  +[8~:~b{~) 

5 ~d Order+27 o o ~h)-- +108( i )~54 i  ~ g__.__tj) 
" o  

+54 ~ ,,~(o1 +216 ~"'c"-~ip) + 5 4 ( ~ - ~ : , ~  

+27 # t2-~(z) +54 "d::~ (~'~-{o) +108 

4 ~ { c c  J +Complex conjugates of all diagrams +54 
except (f) and (g). 

Diagrams for the spectrum function U(~o) defined in (20) to third order in/3. 

Thus in the example  above we must  sum over all o9~, ~o~, and  ~o~ subject  to the 
fo l lowing condi t ions:  the vertex on the left implies tha t  w 1 + ~2 4- oJa = co and the 
vertex on the r ight  implies tha t  ( - - % )  4- (--cos) 4- (--o)z) = (--co). Of  course these 
condi t ions  are identical ,  so tha t  the d iag ram in the example  above  becomes 

S( o) Z {Cro(O,0 Uo(o 2) 
(1,2,310) 

Cons ide r  the fol lowing examples.  

The p roduc t  o f  factors  becomes 

- - S ( o J ) / ~  Uo(O.)I) S (+o , ) ) ,  

Rule  2 implies a summat ion  over  wz �9 The condi t ion  at  the vertex is co + co z ---- ~z + co. 
Thus  we get: 

Note t h a t  ~ = ~ UO(~ 1) = <x2>. 
o31 t~ h to 1 

2) - -  L 
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The frequency associated with each element is shown. The product of  factors 
in this diagram becomes 

-s(@ # v0(o01) s(~,=) #v0(~,~) u0(~,~) v0(~0 #s(-~,) 

We must sum over all co 1 , cos, r r and co 5 subject to the following conditions 
at the vertices: (i) the leftmost vertex implies co I + o02 + r176 = co; (ii) the center 
vertex implies that r162 + o05---= ~ + r (iii) the rightmost vertex implies that 
--o0r - -  co 5 - -  r ----- --co. This last condition is redundant. Thus we get 

-S(o0) # Z U#ol) S(o~) Uo@.) # Y, {Uo(o,,) Vo(cOs)} #S(-r 
(1,2,810) (4,511,2) 

Diagrams for all the terms to third order in fi in the U(o0) expansion are shown 
in Fig. 4.17 Complex conjugates have been omitted, z8 

3.5. Construction of the Consolidated Equations 

We have now developed a/g-expansion for the power spectrum of the Duffing 
equation response to a Gaussian forcing function, and we have devised a set of  
diagrams to represent the terms in this expansion. The next major step is consolidation 
of  this expansion into a more compact representation. 

Consolidation is a process of  collecting the terms into infinite subgroups, each 
represented by a single symbol. Since each consolidated term contains an infinite 
subset of  the original terms, each contains terms of  all orders in #. 

A feature of the Dur ing  and Navier-Stokes consolidations is that some of 
the consolidated elements turn out to be expressible in terms of others [see Eq. (30)]. 
This means we shall not need a new symbol for each consolidation. In these cases 
the consolidation process transforms an explicit expression for the spectrum U(o0) 
(with all quantities on the right side known) back into an equation for U(r with 
this unknown function appearing on both sides of  the equation. 

For  the diagrams in Fig. 4, it is convenient to form three consolidated equations, 
one for the spectrum function itself, one for a "generalized Green's function," and 
one for a "generalized vertex operator" (to be explained in more detail later). 

Looking at Fig. 4 for terms with common factors, we see, for example, 

4-27 ~ ~ _c~..,,~,-~ +81 ~ -~ 9 ~ 

a7 Fourth-order diagrams are availableF ~ 
zs The complex conjugate of a diagram is its mirror image in a vertical plane so that symmetric 

diagrams are real. Thus to make Fig. 4 complete we must add to it mirror images of all unsymmetric 
diagrams. 

82,2/2/2-4 
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+ 5 4  + 

+ 324 ~ ~ + " " )  + " ' "  

Here the relevant terms ~/3 ~ have been included. 
The first group of terms in curly brackets can be factored as 

3{ --+3 ~ +9 ~ ~ 

(24) 

+27 ~ ~ ~ + . . . .  +18 

+ . . . }  ~ . , - .  

The second group of terms in curly brackets in (24) can be factored as 

I~ +3 (-~ +9 2? ~ + 

(25) 

+ - . .  + 18 ~ . ~  + " " }  ~ (26) 

In (25) and (26) the terms appearing in the curly brackets are identical. Further- 
more, factors attached to the ends of  these terms cannot distinguish among them. z9 
Thus we can represent each group of diagrams in (24) as one diagram, introducing 
a new symbol for this "generalized Green's function." Then (24) becomes 

~ + 18 , ~ +  "'" ' (27) C(to) = ,',./~ + 3 

where we define 

-= +3 e ,  +9 ~ �9 

+ . . . .  n8 ~ + " '"  (28) 

The second term on the right of  series (27) is a consolidation of the terms in 
series (25) and the third term a consolidation of the terms in the series (26). 

19 We migh t  say that  their " input"  and "ou tpu t"  effects are identical with those of  a simple Green ' s  
function S(o0, i.e., - -  
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A similar consolidation can be effected, for example, in the following groups 
in Fig. 4: 

{(e) + (r) + -.-}; {(g) + (x) + --'}o 

We shall represent C--C-q, the generalized Green's function, by the letter S'(co). 
The characteristics which guarantee that an element 2~ is included in the general- 

ized Green's function are: 

(1) the element begins and ends with a straight line, 

(2) a straight line runs completely through it. 

All elements to third order with these characteristics are shown in Fig. 5. 
To see why these characteristics are important for consolidation, pick a diagram 

in Fig. 4, say diagram (g). This has two simple Green's functions ( ). I f  we replace 
either one of these, say the one on the left, by any dement in Fig. 5, say (b), we get 
another diagram in Fig. 4: we get (x). 21 

s 0  By an dement, we mean a part of a diagram, e.g., a factor in the corresponding analytical expression. 
~1 Note that if we take an element with either characteristic above but not both and replace a single 

Green's function by it we do not get another diagram in Fig. 4. 

0 th o r d e r -  
(a) 

I s{' order + 3 -  ~) (b) 

2 nd order +18 ( : ~  (c) + 9 ~) 

3rdorder + 27 ~? ~ ~ + 54 
(f) 

+54 

(d) + 18 " ~ : : ~ ( e )  

(g) 

+ 54 ~' ~ : :~ ( i )  (h) 

+ 1 0 8 ~ 4 - ~ ~ 1 6  ~ (I) 

+54 ~ + 108 ~ + 108 
{rn) ~ in) (0) 

+I08 54 g' """ + 108 
"~(q) (r) ~ 

+18 (s)--~ +I08 ~)(t) + 27 (~)~ 

+ Higher Order Terms 

Fig. 5. Diagram for the generalized Green's function to third order in ~. 
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We collect all diagrams which can be formed by replacing one given simple 
Green's function by all the elements in Fig. 5 and replace this collection by a single 
diagram with a generalized Green's function as in the example above. We start 
with the lowest-order diagrams in Fig. 4 and work to higher-order diagrams. Equa- 
tion (27) becomes, keeping all two-vertex diagrams, 

(A) (B) (D) 

+ 9 I+61 I ~ '  I + " ' "  

(E) (F) 

+ complex conjugates of all unsymmetric diagrams. (29) 

In order to consolidate further, consider diagrams (B), (D) of (29) along with 
appropriate higher-order terms: 

(30) 

The last three terms in curly brackets in (30) come from three-vertex diagrams. 
In (25) and (26) we factored out a set of diagrams and gave the set a new name. 

Here the factored set of diagrams can be identified with a quantity already defined. 
Write U(~o) ~ ~ Then the terms in the curly brackets are the same as we 
would get by putting U(co) as expressed by (29) into the summing operation represented 
by a closed loop, i.e., 

( ~ =  F~ u(o;) -- <x~> 
co t 

We can consolidate the group of terms in series (30) into one term, 

We continue this process by forming groups starting with (C) and (E) and 
appropriate higher-order terms, etc. 

At each order (in #) there remain a small number of terms which cannot be 
consolidated into groups with lower-order terms. We shall refer to these as "irreducible 
terms ''2~ [e.g., Fig. 4(g)]. 

~ We shall also refer to consolidated terms which cannot be consolidated further as "irreducible." 
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It can be shown that the sum of all diagrams in Fig. 4 which either can be cut 
in two by severing only one wavy line, or begin or end with a wavy line [e.g., (a), 
(b), (c)] is equal to S'(oJ) o~(oj) S'(--co), where Y(o 0 ~ <g(w) g*(co)> is the spectrum 
of  the forcing function. 123~ Diagrammatically S'(m)~(oJ)S'(--co) is 

Completing the consolidation of (29), we now have 

r = ~ ~ (co )  l : J + 6 ' : ~  

§ 108 , ~ § "'" 

-k complex conjugates of the unsymmetric terms. (31) 

Next we turn to the series for the generalized Green's function S'(co), given by 
Eq. (28) and Fig. 5. In the figure, notice that diagram (g) can be constructed by 
replacing the rightmost simple Green's function in (c) by (b), and (d) can be con- 
structed by replacing the rightmost simple Green's function in (b) by (b) itself. Any 
diagram which can be divided into two parts by cutting one internal ~ simple Green's 
function can be constructed by combining lower-order elements. 

This suggests that we define an auxiliary function ~(w) (say) as what remains 
if we set aside in Fig. 5 all diagrams which can be cut in two by cutting one internal 
simple Green's function, and remove each first and last simple Green's function 
from the remainder: 

~b 60) 
(a) (c) (d) 

-k higher-order terms. (32) 

33 By internal simple Green's function we mean any simple Green's function except the first and last 
on a diagram. 
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As in series (30), we can group diagrams (a), (b), (e), (f) ,  (h) and (i) of series (32) 
(plus higher-order terms) and replace the group by 

Similarly, diagrams (c) and (g) of series (32) (and higher-order terms) can be grouped 
and replaced by 

This diagram is the first of a group that can be consolidated into 

This process begins a series for ~:  

hrt(~ @ + 1 8  ~ + ' ' "  (33) 

A series for the generalized Green's function, S', can be obtained from the 
following equation: 

S'(w) ---- S(oJ) + S(co) W(o)) S'(co). (34) 

If we solve this iteratively ~4 we get all the diagrams in Fig. 5. This reproduces the 
series for S'(co) in Eq. (28). 

Use of (33) and (34) gives the diagrammatic consolidated equation for S': 

~- J - - - - + 3 ~  + 1 8 - - - - ~  " - - ' x + ' ' "  (35) 

With Eq. (31), this gives two simultaneous equations for the two unknown functions 
U(o~) and S'(o~). It is clear from the way these equations were formed that no other 
unknown functions appear in the higher-order terms, so Eqs. (31) and (35) are 
determinate for U and S'. Determinate truncations are considered in Section 4. 

Kraichnan's approach to this problem is somewhat different although the final 
results are similar. He would start with Eq. (7) and multiply by u(--w) and average 
to get [using Eqs. (8) and (9)] 

(u(o~) u(-,o)) = -/3s(~o) Z (u(o~l) u(o~) u(o~) u(-o~)) + s(o0(u0(o~) u ( -~ ) ) .  
(1,2,810) 

2~ As a first approximation, let S'(~) = S(o~). Put this into the righthand side of Eq. (34) to get a 
second approximation, S'(o~) = S(o~) + S(oJ)TJ(o0S(~o). Put this second approximation into the 
righthand side to get a third approximation. Continue this process ad infinitum. 
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He would then expand Z(z,~,zlo) (u(~ol) u(oJ~) u(oJ3) u(--~o)) and (u0(co) u(--w))  in 
series in /3 using series (10). He would then consolidate in the above manner and 
finally get Eq. (35) for S'(~o) and 

-- - - ~ ( ~ )  ~ 4-6  .:' , 4 - 1 8  

4-9 Qr ~=5 : : :3  4 - 1 8 - - ~ - ~ 7 2 ~ D +  . . .  (36) 

for U(co). Equations (35) and (36), each truncated after two terms, correspond to 
the "direct-interaction approximation" to Eq. (1). 

Next we consider an additional consolidation which adds another unknown, 
the generalized vertex operator, and requires an additional equation. The generalized 
vertex operator is defined as the sum of the elements of diagrams in Fig. 4 which 
have the same properties as a simple vertex, i.e., an element must have (1) four 
elements entering, (2) all vertices connected by a continuous solid line, and (3) rule 2 
(Section 3.3) obeyed for the entire operator. These diagrams are shown to third order 
in Fig. 6. 

Following a consolidation process much like that which led to Eq. (31) and 
Eq. (35), we get a consolidated equation for this operator: 

(37) 

We use the letter/"(co, co', co") for �9 where appropriate. In general, this is a function 
of  three variables. 

Having identified a new consolidated operator, we look back at our two equations 
for U and S' to see how they can be consolidated further. 

We would like to group the second and third terms on the right-hand side 
of  (31) plus higher-order terms so that we can factor out the terms in Fig. 6 and 
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Fig. 6. 

ist order 

2 nd order + 6 

3rd order + 56 ~ + 56 ~ 

+ s6 ~ + s6 

+ 3 6  . , -" '3r '~ 

Diagram for the generalized vertex operator to third order in ft. 

replace them by the generalized vertex operator. Because of the symmetry in the 
second term on the right of (31), we must add and subtract 

1 2 @  i 

Then the third term (plus higher-order terms) can be grouped with 

and consolidated. This consolidates (31) to 

= ~ Y(oJ) t____a + 18 i ~ i 

- 1 2 @  I q- 324 I @ ' 

4- 648f @ I §  

(38) 
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All terms in this equation are real (symmetric). Similarly, (35) can be consolidated to 

I ~-- - - + 3 ~  

+ 324 ~ -}- . 

(39) 

Together with (37) these give three equations for the three unknown functions U, 
S'  and/~. 

There are no three-vertex diagrams in (38) and no diagrams with two or three 
vertices in (39). 

The next section covers some truncations of the two-equation set, (31) and (35), 
the "Kraichnan equations," and of the three-equation set (37), (38), (39), the 
"Kraichnan-Wyld equations" (K-W equations). These will provide integral equations 
whose solutions may approximate the statistical properties of x(t) .  

4. T R U N C A T I O N  O F  T H E  C O N S O L I D A T E D  E Q U A T I O N S  

4.1. Introduction 

In this section we consider a number of truncations of the K-W equations, 
(37), (38), and (39), for the Duffing equation. We also discuss truncations of the 
consolidated set represented by (31) and (35), the "Kraichnan equations." 

We shall see that, as far as this calculation was carried for the K-W equations, 
the higher the "pseudo-order ''25 of the truncation, the better the results. That is, 
for given ~ and/3D 26 higher truncations give more accurate estimates of the spectrum 
and the mean-square displacement. Each higher-pseudo-order truncation considered 
keeps all terms kept by lower-pseudo-order truncations considered. 

For the Kraichnan equations (Sections 4.6 and 4.7) one lower-pseudo-order 
truncation gives better results for the mean-square displacement than a truncation 
of higher pseudo-order. However, the higher-order truncation gives better estimates 
of the spectrum, especially at higher frequencies, for some values of fiD/2c~. 

4.2. The 13-Expansion 

Before truncating the consolidated equations, we consider truncation of the 
traditional t-expansion for the spectrum function. We carry the fl expansion to 
second order in/3 to compare with "nominal second-order" (cf. Section 4.3) trunca- 
tions of the consolidated equations. 

25 Cf. Section 4.3 for definition of pseudo-order. 
~ D is characteristic of the spectral density function of the random forcing function. For white noise, 

D is the spectral density. 
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From Fig. 4 we select all diagrams through the second order. The analytic 
expression for the spectrum function U(eo) to second order in/3 is (in the limit as 
T ~  oo) 

U(eo) = Uo(oo) --  3/3M[S@) -1- S(--eo)] Uo(co ) 

q- 9/3~M~[S(eo)S(eo) q- S(--to)S(--eo)] Uo(~o) 

S(,o) Uo(o,). + 18/32 f v0(o  - v0(oy - s (o; , )  ao , ao ,, 
(2~T . . . .  

+ 18/32 S(oo) Uo(w)M f ~  Uo(e ~ _ co') S(w') dw' 
2")7" - -co  

+ 95~M~S(@ S(--o,) Uo(o,) 

S(w) S(--oJ) oo 

f Vo(o, - o.,) Vo( . , '  - + 6/3~ (2=)~ . . . .  

q- complex conjugates of complex terms zv (40) 

where M = 1/2rr f_~ U(~o)&o and is equal to the mean-square displacement (x"). 
S(a 0 is the simple Green's function [Eq. (9)] and U0(w) is the linear (t3 = 0) 

response spectrum of Eq. (1): U0(co) = (u0(~o) u0(--co)) where u0(co) is given by (8). 
These equations were evaluated using a digital computer. The mean-square 

displacement is the integral of U(w)/2rr./3(x2)/2 is plotted against/3D/2a in Fig. 1. 
The solid line represents the Fokker-Planck (theoretical) values (Section 2.1). 

Figure 1 shows that this traditional approximation yields good results for the 
mean-square displacement for/3D/2o~ ~ 0.075, c~ = 2.0. For/3D/2a ~-, 0.5, a = 0.5, 
the spectrum computed by this method develops negative regions, a physical 
impossibility. 

4.3. The Question of O r d e r  for the Sets of Consolidated Equations 

In Section 3.4 we developed a traditional fi expansion for the response spectrum. 
This expansion is shown, in part, in Fig. 4. There is no trouble defining what we 
mean by "order"--we define the order of a term as the exponent of/3 in that term. 

In the consolidated equations, the question of "order" is not nearly so clear. 
Each term except the first in the equations for the generalized Green's function 
and generalized vertex operator in the consolidated equations represents an infinite 
subset of terms in the traditional/3 expansion, hence terms of all orders in/3. Let 
us define the lowest-order (in fi) member 2s of this subset as the "fundamental 
member" of this subset. Then the consolidated term contains terms of all orders 
in fi equal to and higher than the order of its fundamental member. Thus a reasonable 
definition of the nominal order of a consolidated term would be the order of  its 
fundamental member. 

-aT Note that U(o~) and U0(r are real while S is a complex function. 
~s By "member" we mean a diagram in the set of diagrams subsumed in a consolidated diagram. 
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To define an order of truncation of either the K-W or the Kraichnan consolidated 
equations is a little more difficult. This difficulty arises because we should say some- 
thing about the distribution of higher-order terms kept. For example, if we truncate 
both sets of equations, keeping all second-nominal-order terms in both, the K - W  
equations contain many more of the higher order (in/3) terms than do the Kraichnan 
equations. 

Therefore, when referring to truncations of consolidated equations, we need 
a minimum of two numbers. The first refers to the nominal order of the first irreducible 
term [cf. equation (31)] in the equation for U(oJ) neglected, minus one. The second 
number comes from counting the terms in the /3 expansion with the same order 
as the fundamental member of the first neglected consolidated term. It is equal to 
the ratio of the number of terms in the/3 expansion at this order which are included 
in the consolidated terms kept, to the total number of terms (in the/3 expansion). 

An equivalent way of defining the first number is to take it equal to the highest 
order (in/3) of the traditional/3 expansion, all of whose terms are subsumed in the 
consolidated terms kept after truncation. 

We shall call these two numbers the pseudo-order of the truncation (e.g., the 
truncation of the K-W consolidated equations, keeping all second-nominal-order 
terms, has pseudo-order 3-321/323; while the Kraichnan equations, truncated keeping 
all second-nominal-order terms, have pseudo-order 2-36/44). 

It must be emphasized that the nominal order and the pseudo-order are merely 
operational information. There is no a priori  reason to expect that a truncation of  
higher pseudo-order gives a better approximation than one of lower pseudo-order. 

4.4. The First Kra ichnan-Wyld  Approx imat ion  

The first truncation we consider is of pseudo-order 1-5/8. One reason for 
including it is the results have a simple interpretation. 

Consider the following truncation of the K-W equations or the Kraichnan 
equations (to this pseudo-order they give the same results). 

= ~ ~ - ( ~ o ) ,  , 

~ - -  - + - 3 .  

o = .  ( 4 1 )  

We call this the "first K-W approximation." 
We can solve the second equation in (41) for S'(co), the generalized Green's 

function, 

S'(oJ) = S(oJ) -- 3S(~o)5MS'(w) (42) 

where 

M = ~ U(oJ) do~ 
- - o o  
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is the mean-square  displacement (x2), and 

F r o m  (42), 

so that  

S(~o) : 1/(1 - - co  ~ -t- ic~r~) 

s(~o) 
s ' ( ~ )  = I q- 3riMS(co) 

1 
S'(co) = (1 + 3]?M) --  co 2 q- ic~o (43) 

The analytic expression for  the first equat ion in (41) then becomes,  

~176 (44) 
U(~o) = (1 q- 3 t i M  --  ~o2) 2 q- c~2oJ 2 

Notice that  S'(oJ) is the Green 's  function of  a linear harmonic  oscillator whose 
damping  coefficient is a and whose spring stiffness is 1 q- 3tiM. 

In  configurat ion (i.e., "physical")  space, this is an exact solution of  

dO q- a2 q- x q- 3 ~ ( x 2 ) x  = f ( t )  (45) 

where ( x  2) is the mean-square  response of  (45). 
Assume that  ~(co)  = D, a constant,  29 in (44), i.e., that  f ( t )  is white noise. 

Divide by 2vr and integrate U(o~) over  all frequencies: 

D f ~ &o 
M = ~ -~o 0)4 -~ ( 0~2 - -  2 --  6t iM)co  2 if- (1 + 313M) 2 

(46) 

Integrat ion yields 

M - -  
1 1 ~/-]- riD • + 

Because M > 0, the positive root  is the physical one: 

2 - -  12 -k 1 q- 12 (~-g- ) .  (47) 

These results could have been gotten directly f rom (1) by the method  of  
equivalent linearization. (24) In  this method the linear equat ion is assigned a spring 
stiffness equal to some average of  the spring stiffness of  the nonlinear system. 

The result (47) is plotted in Fig. 1. 

39 Practically, this means o~(~o) is constant up to a frequency much higher than any other frequency 
of interest in the system. ~zs) 



Expansions for Estimating the Response of a Randomly Driven Nonlinear Oscillator 181 

4.5. The Linear Green's-Function Approximat ion 

The next truncation we consider does not keep all second-nominal-order terms 
in the consolidated equations. This truncation is interesting because it can be shown 
at least to have positive definite energy, provided that we choose a positive definite 
initial guess in our iterative solution. 

From Eqs. (37), (38) and (39) we keep the following terms 

Q)~_-. (48) 

We shall refer to this truncation as the linear Green's-function approximation 
because S'(w) is replaced by S(o)). Analytically a~ these equations correspond to 

- 

= + . . . .  

• U(co' - -  co") U ( J ) ]  d~o' do)" I S(--~o) (49) 

o~(co) must be positive-definite in order to be realizable. I f  the initial guess at 
the solution to (49) 31 is a positive definite even function, it follows that the first 
approximation, and hence each succeeding one, must be positive definite. 

This truncation keeps only a relatively small fraction of even-order terms (but 
some terms of  a / /even  orders) in/3. Its pseudo-order is 0-0/2. As we can see f rom 
Fig. 1, it gives fairly good results for the mean square in the range ~D/2c~ ~ 0.1. 
For larger values of  ~D/2o~, it deviates more and more. For  t~D/2oL ~ 0.26, the 
iteration scheme did not converge even when the spectrum for the same ~ and 
fiD/2o~ : 0.25 was used as the initial guess. 

All the equations we get for each truncation require care in solving. The iteration 
scheme used to solve these equations did not, in general converge for arbitrary 
initial guess. This is discussed elsewhere. 123> 

The spectrum function was calculated using Eq. (49) for c~ : 0.5 and c~ : 2.0 
and for various values of/3D. 

4.6. The Quasilinear Green's-Function Approximat ion 

The next truncation we consider resembles the "cumulant  discard approxima- 
tion." This approximation is not a natural truncation of  the equations (37), (38) 
and (39), since it drops second-nominal-order terms in the generalized Green's 

30 Notice that going from the diagrams to the analytic expressions is exactly the same as in Section 
3.4 except that we deal with U and S' instead of Uo and S where applicable. 

3z To be substituted into the integral as the first step in the iteration (or "successive-approximation") 
method of solution. 
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function and the generalized vertex operator, while keeping one in the spectrum 
equation. 

The approximation considered is 

= ~ -J ~'(oJ) '. ' + 6 ~ : :  ' 

, 

o = .  (50) 

We refer to this truncation as the quasilinear Green's-function approximation 
because, if we are given the mean-square displacement, the equation for the Green's 
function is linear. Its pseudo-order is 1-6/8. Analytically this is 

t 4- 6fi~ fo~ &o' f~ dw"U(co--o/) u ( ~ )  = s ' ( ~ )  J ( ~ )  ~ (2~)  2 . . . .  

• u( ,o '  - ~o") u(~o")l s ' ( - ~ o )  

S'(~o) = S(~o) -- 3/3MS(~o)S'(~o) (51) 

where M = 1/27r .[_~ U(o~)doJ = (xZ). 
It turns out that the cumulant-discard-approximation equations are the following: 

U(o~) = S'(,o) ~-(o~) S'(--o~) 

S'(w) S'(--w) f~ do~' foo doJ"U(w -- w') U(w' -- o7) U(oJ") (52) 
(2702 . . . . .  

where S'(oJ) = S(~o) -- 3/3MS(~o) S'(oJ). 
The second (S') equations in (51) and (52) are identical. The difference lies in 

the sign of the second term in the equation for U(~o). 
Numerical results based on both of these equations indicate that the quasilinear 

Green's-function truncation of the K-W equations gives much better results for 
larger values of fiD/2a. The mean-square values predicted are very good over the 
whole range of flD/2~x considered here. Larger values of ~D/2o~ would have required 
the development of noniterative techniques for solving the integral equations. 

It is important to note that in constructing the consolidated equations, we made 
no assumptions concerning the cumulants. In fact, Kraichnan m points out that 
for his direct-interaction approximation, some cumulants of all orders are kept. 
This is true here also. Thus, despite the striking resemblance in the two sets of 
equations, the assumptions are quite different, so that differing results are to be 
expected. What is strange is how little difference there is. 

4.7. The Direct- Interact ion Approx imat ion  

It is at this point that the truncations of the equations (37), (38) and (39) and 
equations (35) and (31) begin to differ. In this section we consider the truncation 
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of (35) and (31) which keeps all second-nominal-order terms. This corresponds 
closely to Kraichnan's direct-interaction approximation, a2 

The diagrammatic representation is 

, = ~ + 3  

+ 6 ~ - I (53) 

This truncation includes all diagrams to the second order in the fl expansion. 
It also includes terms of all order in ft. Its pseudo-order is 2-36/44. 

Analytically, equation (53) represents 

U(o~) = S'(~o) o~(~o) S'(--o~) 

+ (2~r)~ - ~  dos -~o dw"U(oJ - -  co') U ( c o ' - -  U(w")  

S'(~) ---- S(eo) -- 3/3MS(co)S'(w) 

6fl s( o) f~ + (2rr) 2 -oo &o'  -|  &o"U(oJ - -  co') U(co' - -  co" )S ' (o7 )  (54) 

It follows as in Section 4.5 that the power spectrum is always positive or zero. 
Equation (54) can be converted to the D.I.A. [cf. Equation (36)] by replacement 

of S'(o~) by S(o~) while not changing S ' ( - - co ) ,  and addition of the appropriate 
second-order terms. With this replacement it is no longer obvious that the spectrum 
is nonnegative-definite. In the case of  the Navier-Stokes equations, it has been 
shown that the spectrum is nonnegative, a3) 

Equation (54) gives good values for the mean square for flD/2o~ <~ 0.25. For  
larger values of flD/2c~, fi(xZ)/2 grows faster than the exact values. By flD/2c~ ~ 0.75, 

(x2)wvr~ -- (x2)exaet ~ 0.30. 
(X2) exacr 

These results are not as good as those given by the truncation described in 
the previous section. That success may have been just accidental. 

The spectrum agrees well with experiment in regions where the mean square 
is within a few percent of  the exact value (cf. Figs. 7-9). 

3~ We call this the "direct interaction approximation" even though it differs slightly from Kraichnan's 
D.I.A. in the diagrams kept from the fl series at fourth and higher orders. Since both (53) and 
Kraichnan's D.I.A. omit the same third-order (in fl) terms, one would not expect the results to 
differ greatly. 
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4;8. The  Second K r a i c h n a n - W y l d  A p p r o x i m a t i o n  

The truncation of (37), (38), and (39), in which we keep all second-nominal-order 
terms, is quite different from the truncation in the last section. This truncation is 

~ = '  '~(o9, "1+181 ~ 

- -121 ~ I 

r----'n = - - + 3  ~ "', 

(3 = - + 6 ~  (55) 

We call this the second K-W approximation. These equations keep all third-order 
terms of the fl expansion. The pseudo-order is 3-321/323. 
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Analytically, 

u(o)) = s ' (o))  ~ ( o ) )  s ' ( - o ) )  

18S'(o)) S'(--o)) oo 

+ ~ do)' f dJr(o)') V(o) - o)') U(o)' - J )  V(J )  r(~o") (2rr) z . . . . .  

_ 1 2 ~ s ' ( o ) ) s ' ( - o ) )  ( ~  a~'  f ~  do)"v(o) - o)') v(o)' - o)") v ( J )  
(2,~) ~ . . . . .  

3S(o)) S'(ct,) o o  

S'(o)) = S(o)) + f F(o) --  o)') U(o)') do)' 
2~T ~o0 

61-'(o)) / ' ( - co)  
/'(co) = --13 + f U(~o --  o)') S'(o./) do)' (56) 

2 ~  - - D O  

The form of these equations again assures us of nonnegative definite energy. 
The mean-square displacement predicted by Eq. (56) is very good up to 

/3D/2~ ~ 0.8. For t3D/2o~ >~ 0.8, growing computational-stability problems made 
calculations difficult. 

82a/2/2-5  
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4.9. The Numerical  Results 

The response spectra predicted by the truncations discussed in this chapter are 
shown in Figs. 7-9. As ~D/2~ --~ 0 (~ = 2.0 and a = 0.5) all of the truncations 
approach the same (linear) results. The amplitude and phase of a typical modified 
Green's function are shown in Figs. 13-14. 

Figures 10-12 give the second K-W approximation, numerically filtered, with 
data measured from the analog-computer experiment (Section 2.2). 

5. H I G H E R  M O M E N T S  

5.1. Preliminary Remarks 

In this section it is shown that, with restriction to a Gaussian forcing function, 
all higher moments for the response of (1) can be expressed in terms of the spectrum 
function, generalized Green's function, and generalized vertex operator. As an 
example, we consider a two-time fourth moment (including the "flatness factor") 
for the solution of equation (1). 

5.2. The Fourth Moment  of the Response of Eq. (1) 

In Section 3, we used the/3 series for the instantaneous Fourier amplitude 
field to develop equations for the spectrum function of (1). We can also use this 
method to develop consolidated expansions for other statistical functions. 
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The Fourier transform of 

F('r) = <x2(t) x2(t 4- T)) 

in the stationary case is 

y~ <.(~o - o~') .(o~') u*(o, - J )  . * ( J ) )  
o / ~ c o  tr 

(57) 

(58) 

Define a symbol �9 such that 

f 
f 

\ co t 

Assume that u = u0 + ul + "'" where uo, u l ,  etc., are expressed in terms of  the 
diagrams in Fig. 4. 
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Fig. 13. 
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In terms of diagrams, (58) is 

+ 2  + ' "  

| 2 4 7  
-t- complex conjugates of unsymmetric diagrams (59) 

These diagrams, shown to second order in Fig. 15, contain elements that are 
identifiable with diagrams from Figs. 4, 5, and 6. This allows us to group and 
consolidate terms in (59) in the same way as done previously. 

To second nominal order we get the fourth moment equal to 

+ 72 @ + 72 

-}- "'" -t- complex conjugates of unsymmetric terms (60) 

The flatness factor, <x4>/<x2> 2, is the sum of (58) with respect to co [which is 
the r --~ 0 limit of (57)], divided by square of the mean-square displacement. 

The first term in (60) is just 

where M is the mean-square displacement. 
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Fig. 15. Diagrams for the fourth moment considered in Section 5.2. 

The second term is 

Summing over co gives 

2 ~ ~(~o') u(~o - ~/) 
o J  

2 I = 

Thus the first two terms contribute the (Gaussian) value 3.0 to the flatness factor. 
One of the difficulties in going f rom the diagrams to the analytic expressions 

is the interpretation of the generalized vertex operator. In the last four terms 
explicitly shown in (60) the generalized vertex operator can be interpreted in two 
different ways. For example, consider the second-order contribution to the generalized 
vertex operator and the third term in (60). This term has consolidated in it 

,2 @ o0d ,2 c ~  
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Thus when going to the analytic forms we must interpret the generalized vertex 
.operator both ways, taking care to subtract out excess contributions made by the 
simple vertex, as we did in (38). 

The second of these interpretations yields 

12 Z U(o~ -- o;) S'(o;)/ '(co) V(~o -- co") Uo;'). 
OJP~CO a 

In the limit as the time interval (period) goes to infinity, the contribution to the 
flatness factor is 

24 co  

f dco(U*S)(co)(U*U)(oo) I'(~o) (61) 2zrM 2 _ ,  

where the complex conjugate has been included, and the asterisk (*) indicates a 
convolution. 

The rest of the terms in (60) can similarly be interpreted. This example illustrates 
that once we have consolidated equations for the spectrum, generalized Green's 
function and generalized vertex operator, we can find all higher moments in terms 
o f  these functions. 

Tentative numerical results (cf. Fig. 2) indicate that truncating (59) after the 
third term (referred to as the "first truncation") gives better results than keeping 
the six terms explicitly shown (the "second truncation"). This is not surprising since 
the consolidation considered here leads directly to an equation for the second 
moment. The three functions calculated in Sections 3 and 4 would not be expected 
to contain much information about higher moments. 

These results are tentative because there is no way to check them directly. As a 
partial check we used the fourth moment (x3(t) x(t + ,)) to get the flatness factor, 
and the results were the same. More work on this will be necessary before a firm 
conclusion can be drawn. 

6.  C O N C L U D I N G  R E M A R K S  

Kraichnan ~1~ refers to the consolidated equations as consolidated "expansions." 
This terminology could be misleading because the word "expansion" usually refers 
to situations in which the "unknown" is presented in isolation, equal to a series 
of  "known" quantities. In contrast, the consolidated equations are integral equations 
with the unknown function appearing in all the terms except the first on the "right- 
hand side." The expression "consolidated expansion" applies very well, on the 
other hand, to the expressions for the higher moments discussed in Section 5. 

The numerical results reported here suggest that this distinction between 
consolidated equations and consolidated expansions may be relevant. The keeping 
of  higher-nominal-order terms (in the sense of Section 4.3) in the consolidated 
equations improved the results, whereas the keeping of higher-nominal-order terms 
in the consolidated expansion did not. 

Another question is how the solutions of these consolidated equations relate 
to the solution of the original problem. If  the consolidated equations are solved 
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iteratively [in the same manner as (34)], the terms in the iterative solution are 
identical to the terms in the simple parametric expansion. Thus, if the response 
spectrum is analytic so that the parametric expansion represents the function, and 
if the solution of the consolidated equations is unique, then the solution of the 
consolidated equations is indeed the response spectrum of the original equation. 
The question of the uniqueness of the solutions of the consolidated equations (or 
their existence) and the question of the analyticity of the response spectrum for the 
consolidated equations are still unanswered. 

We should also ask how rapidly the solution of the truncations of the consolidated 
equation approach the solutions of the untruncated consolidated equations as the 
pseudo-order of truncation is increased. Or do they approach it at all, except in 
the limit? A partial answer to this question was suggested by the numerical results 
in Section 4. There the higher pseudo-order truncation (in the sense of Section 4.3), 
gave a better spectrum. The second K-W approximation gave very good results 
for the response spectrum in all cases tested. 

It was seen in Section 3 that there is no unique way to form consolidated 
equations. The Kraichnan hierarchy and the K-W hierarchy are both plausible 
consolidations. One difference was the introduction of an additional generalized 
operator (hence an additional step of consolidation), the generalized vertex. Are 
there additional operators which could be introduced to provide further consolida- 
tion? The answer to this is apparently negative. Any new generalized operator 
would have to be devised from elements of consolidated diagrams. There do not 
seem to be any groups of elements of consolidated diagrams with the same properties, 
which could be factored out to define a new generalized operator. 

In other problems it may be helpful to introduce more than one of each kind 
of generalized operator,(15) although this did not seem helpful for the Duffing equation. 
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